Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Game-Theoretic Lane-Changing Decision-Making Methods for Highway On-ramp Merging Considering Driving Styles

2024-04-09
2024-01-2327
Driver's driving style has a great impact on lane changing behavior, especially in scenarios such as freeway on-ramps that contain a strong willingness to change lanes, both in terms of inter-vehicle interactions during lane changing and in terms of the driving styles of the two vehicles. This paper proposes a study on game-theoretic decision-making for lane-changing on highway on-ramps considering driving styles, aiming to facilitate safer and more efficient merging while adequately accounting for driving styles. Firstly, the six features proposed by the EXID dataset of lane-changing vehicles were subjected to Principal Component Analysis (PCA) and the three principal components after dimensionality reduction were extracted, and then clustered according to the principal components by the K-means algorithm. The parameters of lane-changing game payoffs are computed based on the clustering centers under several styles.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Interior Noise Analysis of a Commercial Vehicle Cab by Using Finite Element Method and Boundary Element Methods

2016-09-27
2016-01-8051
In order to predict the interior noise of a commercial vehicle cab, a finite element model of a heavy commercial vehicle cab was established. An acoustic-structure coupling model of the cab was built based on experimentally validated structure model and acoustic model of a commercial vehicle cab. Moreover, based on the platform of Virtual. Lab, the acoustic field modes of the acoustic model of the commercial vehicle cab and the coupled modes of the acoustic-structure coupling model were analyzed by using the acoustic-structure coupling analysis technique. The excitation of the vehicle cab was tested at an average speed on an asphalt road. Then, the interior noise of the heavy commercial vehicle cab was predicted based on FEM-FEM method and FEM-BEM method with all the parameters and excitation. Furthermore, the predicted interior noise of the commercial vehicle cab was compared with the tested interior noise.
Technical Paper

Interior Noise Prediction and Analysis of Heavy Commercial Vehicle Cab

2011-09-13
2011-01-2241
The basic theory of statistical energy analysis (SEA) is introduced, a commercial heavy duty truck cab is divided into 35 subsystems applying SEA method, and a three dimensional SEA model of the commercial heavy duty truck cab is created. Three basic parameters including modal density, damping loss factor and coupling loss factor are calculated with analytical and experimental methods. The modal density of the regular wall plate of the cab is calculated with traditional formula. The damping loss factors of the regular and complicated plates are obtained using analytical method and steady energy stream method. Meanwhile, the coupling loss factors of structure-structure, structure-sound cavity, and cavity-cavity are also calculated. Four kinds of excitations are in the SEA model, including sound radiation excitation of engine, engine mount vibration excitation, road excitation and wind excitation.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Technical Paper

Novel Method for Identifying and Assessing Rattle Noise on Vehicle Seatbelt Retractors Based on Time-Frequency Analysis

2021-03-04
2021-01-5015
Rattle noise as an error state of cabin noise in vehicles has become an important topic both in research and application. In engineering, the commonly used method to evaluate and detect rattle issues is greatly dependent on experts’ personal auditory perception. People judge a noise simply as “loud” and “not loud” or “qualified” and “unqualified.” A more objective method needs to be developed to eliminate the randomness of subjective evaluation. In this paper, a rig test of the seatbelt retractors was performed, and simulated random excitation was applied to the test samples through the MB vibration test bench in a semi-anechoic chamber. The rattle noises were recorded by HEAD SQuadriga II. Various methods were employed to identify and assess the severity of rattle noise on seatbelt retractors.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method

2015-04-14
2015-01-1348
A detailed multi-body dynamic model of a passenger car was modeled using ADAMS/Car and then checked by the ride comfort and handling stability test results in this paper. The performance criterion for ride comfort evaluation was defined as the overall weighted acceleration root mean square (RMS) value of car body floor, while the roll angle and lateral acceleration of car body were considered as evaluation indicators for handling stability performance. Simultaneously, spring stiffness and shock absorber damping coefficients of the front and rear suspensions were taken as the design variables (also called factors), which were considered at three levels. On this basis, a L9 orthogonal array was employed to perform the ride and handling simulations.
Technical Paper

Performance Analysis on 3D Printed Beak-Shaped Automotive Tail Fin Filled with Honeycomb Cellular Structure

2019-04-02
2019-01-0712
The concept of “bionic design” has driven the developments of automotive design. In this paper, a novel beak-shaped automotive tail fin with honeycomb cellular structure is proposed based on the idea of “bionic design”. Beak-shaped appearance is utilized to meet the requirement of aerodynamics performance, inner honeycomb cellular structure is filled to achieve more lightweight space. This paper starts from the establishment of three dimensional (3D) model based on the real characteristics of sparrow’s beak. On this basis, aerodynamic performances of novel beak-shaped tail fin and conventional shark tail fin are analyzed by experiment. Finally, the stiffness and modal analyses of solid beak-shaped tail fin and honeycomb beak-shaped tail fin are carried out respectively. The results indicate that the deformation of solid beak-shaped tail fin and honeycomb beak-shaped tail fin satisfy the basic requirements.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

2002-11-18
2002-01-3093
Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
Technical Paper

Personalized Human-Machine Cooperative Lane-Changing Based on Machine Learning

2020-04-14
2020-01-0131
To reduce the interference and conflict of human-machine cooperative control, lighten the operation workload of drivers, and improve the friendliness and acceptability of intelligent vehicles, a personalized human-machine cooperative lane-change trajectory tracking control method was proposed. First, a lane-changing driving data acquisition test was carried out to collect different driving behaviors of different drivers and form the data pool for the machine learning method. Two typical driving behaviors from an aggressive driver and a moderate driver are selected to be studied. Then, a control structure combined by feedforward and feedback control based on Long Short Term Memory (LSTM) and model-based optimum control was introduced. LSTM is a machine learning method that has the ability of memory. It is used to capture the lane-changing behaviors of each driver to achieve personalization. For each driver, a specific personalized controller is trained using his driving data.
Technical Paper

Research on Control Algorithm of Active Steering Control Based on the Driver Intention

2019-11-04
2019-01-5064
Active steering technology can improve the operability of the driver by the involvement to the steering system. Driver is the major controller of the vehicle Therefore, the involvement of advanced technologies including the active steering technology shouldn’t interfere with the intention of the driver, and the driver should still have great control of the vehicle. The aim of this paper is to solve the problem of the driver’s control when the active steering system works to improve the flexibility of the low speed and the stability of the high speed, and the active steering model based on the driver’s steering intention is established. Through the CarSim simulation software, this paper adopts 9 parameters related to the vehicle steering of the DLC (Double Line Change). And PCA (Principal Component Analysis) algorithm, a tool of statistical analysis, is applied to select 4 parameters which can stand for the DLC from the 9 parameters, which makes the data processing easier.
Technical Paper

Research on Driver Model Based on Elastic Net Regression and ANFIS Method

2022-11-08
2022-01-5086
With the aim of addressing the problem of inconsistency of the traditional proportion integration (PI) driver model with the actual driving behavior, a longitudinal driver model based on the elastic net regression (ENR) and adaptive network fuzzy inference system (ANFIS) method is proposed. First, longitudinal driving behavior data are collected through bench tests to extract the characteristic parameters that affect driving behavior. A quadratic regression model is established after considering the nonlinear characteristics of the driver behavior. The multi-collinear problem of high-dimensional variables in the regression model is solved by the ENR method, and the parameters with significant influence on driving behavior selected. A longitudinal driver model of ANFIS was established with the selected characteristic parameters as input. Finally, the validity of the model is verified by comparing it with the PI and ENR driver models.
Technical Paper

Research on Driver’s Lane Change Intention Recognition Method Based on Principal Component Analysis and GMM-HMM

2022-03-31
2022-01-7021
Aiming at the problems of long lane change intention recognition, complicated lane change model, and huge amount of processing data in the current research, this paper uses principal component analysis to improve the driver’s lane change intention recognition model using traditional pattern recognition. Firstly collect 7 parameters including driver operation and vehicle running characteristics. After data standardization and PCA (principal component analysis), the top three principal components that can reflect the information content of the original data are nearly 90%. Then, a lane-change intent recognition model based on GMM-HMM was established, three lane change intents cannot be directly observed as the hidden state of the model; and three principal component quantities obtained through linear changes are used as observational measurements.
Technical Paper

Research on Intake System Noise Prediction and Analysis for a Commercial Vehicle with Air Compressor Model

2023-04-11
2023-01-0431
Intake system is an important noise source for commercial vehicles, which has a significant impact on their NVH performance. To predict the intake noise more accurately, a new one-dimensional prediction model is proposed in this paper. An air compressor model is introduced into the traditional model, and the acoustic properties of the intake system are simulated by GT-power. The simulation data of the inlet noise is obtained to make a comparison with the inlet noise data acquired from a test. The result shows that the proposed model can make a more precise prediction of the inlet noise. Compared with the traditional model, the proposed model can identify the noise coming from the air compressor, and achieve a more accurate prediction of the total sound pressure level of the inlet noise.
Technical Paper

Research on Lane-Changing Decision-Making Behavior of Intelligent Network-Connected Autonomous Vehicles

2022-12-22
2022-01-7066
With the rapid development of science and technology, the automobile industry is developing rapidly, and intelligent networking and autonomous driving have become new research hotspots. The safety and efficiency of vehicle driving has always been an important research topic in the transportation field. Due to reducing the participation of drivers, autonomous vehicles can reduce traffic accidents caused by human factors. While the development of intelligent networking can achieve information sharing between vehicles, and improve driving efficiency to a certain extent. Based on the game theory and the minimum safe distance condition, this paper establishes a lane changing decision model of intelligent network-connected autonomous vehicles, puts forward a game payoff function and analyzes the game strategy.
Journal Article

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

2019-04-02
2019-01-0678
With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
X